
 

 

Chapter 1:  Hardware and Software Overview 

In Fall 2019, ROBOTIS released the ENGINEER Kit 1 
(https://emanual.robotis.com/docs/en/edu/engineer/kit1/#introduction) and followed up in Spring 2020 
with the release of the ENGINEER Kit 2 
(https://emanual.robotis.com/docs/en/edu/engineer/kit2_introduction/).  Both kits use a new Hardware 
Controller named CM-550 which is based on an ARM Cortex-M4 microcontroller clocking at 168 Mhz 
along with 1024 KB of Flash Memory.  This larger memory allows 40.5 KB to be allocated to its TASK 
section and increases the number of TASK Variables to 200.  The higher clock rate and increased 
memory also allows the embedding of a MicroPython engine inside the CM-550. 

A new type of Dynamixel was also premiered: the 2XL430-W250-T containing two servo motors 
with their axles mounted perpendicular to each other allowing a more compact design of jointed linkages 
(http://emanual.robotis.com/docs/en/dxl/x/2xl430-w250/).  The ENGINEER kits can also use the single-
servo version XL430-W250-T (http://emanual.robotis.com/docs/en/dxl/x/xl430-w250/#control-table).   

Let us have a closer look at the main features of the hardware and software systems for the 
ENGINEER kits. 

1.1 CM-550 

The CM-550 supports only Protocol 2 Dynamixels 
(http://emanual.robotis.com/docs/en/dxl/protocol2/), thus the older AX-12 and AX-18 actuators from the 
BIOLOID series are not compatible with this Hardware Controller (3-pin JST connectors are now used 
instead of the old 3-pin Molex connectors) (Thai, 2017).  The XL-320 actuator unfortunately is also not 
compatible with the CM-550, even though it is a Protocol 2 Dynamixel, because it operates at 7.4 V while 
the CM-550 operates at 11-12 V.  

The CM-550 has 6 X-series Dynamixel ports (3-pin) and 5 GPIO ports (5-pin) 
(http://emanual.robotis.com/docs/en/parts/controller/cm-550/#specifications).  These 5-pin ports allow the 
use of small sensors and actuators developed for the DREAM and MINI systems 
(http://emanual.robotis.com/docs/en/parts/controller/controller_compatibility/#parts) (Thai, 2018; Thai, 
2020).     

The CM-550 retains the buzzer/microphone feature from the older CM-510/CM-530 series, but it has 
a new feature not found in the older series: an embedded 3-axis accelerometer/gyroscope including a data 
processor module to generate Roll, Pitch and Yaw angles.  

In the communications hardware area, it has one Micro USB port and one 4-pin UART port, and 
surprisingly an embedded BT-410 module (see Fig. 1.1):   

 

 

Fig. 1.1 Bottom view of CM-550 showing the embedded BT-410 module on the right. 
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Fig. 1.3 Access to RPi0W via MANAGER Tool. 

1.2 2XL430-W250-T and XL430-W250-T 

Fig. 1.4 shows a 2XL430-W250-T actuator with mounted frame parts to illustrate its two 
perpendicular motor axles (http://emanual.robotis.com/docs/en/dxl/x/2xl430-w250/).   

 

 

Fig. 1.4 Dynamixel 2XL430-W250-T. 

 

It has full 360-degree Position Control including Multi-Turn capability thanks to the use of a 
magnetic encoder for position sensor (at 12-bit resolution).  Of course, it also can be used in Wheel Mode.   

Its usage/control is more sophisticated than for the AX-12/18 or XL-320 modules: 

 Its Operating Mode (Control Table Address 11) can be set to 4 modes: Velocity Control (i.e. 
wheel mode), Position Control (i.e. joint mode), Extended Position Control (i.e. multi-turn 
mode), and PWM Control (for users wanting to control directly the motor’s Pulse-Width-
Modulation voltages). 

 Its Drive Mode (Control Table Address 10) can be set to Normal or Reverse modes, using a 
Velocity-based or Time-based Profile. 

 Additionally, the user can specify its Profile Acceleration (Address 108) and Profile Velocity 
(Address 112) in combination to obtain 4 types of Position Control modes: STEP, 



 

 

RECTANGULAR, TRAPEZOIDAL or TIMED (more details in Chapter 2 and YouTube 
video at https://www.youtube.com/watch?v=4G7DZEVEOmg).   

The single-servo version XL430-W250-T can also be used with the ENGINEER kits 1 and 2 and its 
Control Table information can be found here (http://emanual.robotis.com/docs/en/dxl/x/xl430-
w250/#control-table-data-address).   

1.3 Software Tools 

The CM-550 firmware supports the usual TASK and MOTION tools and now adds a MicroPython 
engine via a redesigned TASK tool (V. 3.1.1.2 and later) that contains all these 3 sub-tools (see Fig. 1.5).  
Please note that a downloaded MicroPython program would overwrite any previously downloaded TASK 
program, and vice versa. 

 

Fig. 1.5 MicroPython programming on the CM-550 via TASK (V. 3.1.1.2 and later). 

In the area of Communications Programming, the CM-550 allows the TASK/MicroPython 
programmer to set up 3 communications ports via TASK/MicroPython’s Custom Address commands: 

 The TASK MONITOR Port (Control Table Address 35) is where the outputs of PRINT and 
PRINTLN commands go to (NOTE: in MicroPython, this port is named CONSOLE).  The 
TASK MONITOR Port can be set to BLE (= 0), UART (= 1) or USB (= 2). 

 The APP Port (Control Table Address 36) is where communications can be set up between 
the Remote App and the CM-550.  ROBOTIS intended this port to be used with its Mobile 
App ENGINEER, but the author had found that it works for an application from a Windows 
PC as well (more application details in Chapter 2).  The APP Port can only be set to BLE (= 
0) or UART (= 1) and not to USB currently.  It looks like that ROBOTIS wants to keep the 
USB Port to be used with the RPi0W that comes with ENGINEER Kit 2. 

 The REMOTE Port (Control Table Address 43) is where Remocon packets are received or 
transmitted by the CM-550 (http://emanual.robotis.com/docs/en/parts/communication/rc-
100/#communication-packet).  The REMOTE Port can be set to BLE (= 0), UART (= 1) or 
USB (= 2) (more application details in Chapters 2 and 3). 

----- 

For the ENGINEER series, ROBOTIS provides many free educational materials but the interested user 
needs to register his/her CM-550 Serial Number with ROBOTIS at this web link 
http://en.robotis.com/model/login.php?url=/pdf_project/register.php# before the user can downloading 
them: 

 TASK 3 Programming Outline of 8 lessons (4 pages). 
 TASK 3 Programming Curriculum (T3PC), with the actual lessons (408 pages). 



 

 

 Python Online Workbook (POW), with 24 lessons and practice questions (282 pages). 
 Python Teacher’s Guide (PTG), with 24 lessons – essentially POW with answers and extra 

practice questions (477 pages). 

Building on these ROBOTIS resources, this book series (planned for 2 volumes) is written to help 
interested users to further utilize the capabilities of the ENGINEER Kits 1 and 2 and even extend these 
resources whenever possible.  This overall goal yields an unusual format for this book series: 

 Each chapter showcases one robot type, starting in Volume 1 with the “SimpleBot with 
Arms” (see Fig. 1.6) and progressing towards more sophisticated robots in later chapters and 
into Volume 2.   

 

 Fig. 1.6 Simple Bot with Arms (SBwA). 

 Furthermore, within each chapter, the programming tool/environment used also progresses 
from “simple” like TASK/MOTION and MicroPython on the CM-550 to more “sophisticated” 
and “enabling” tools such as standard Python and C++ on a Windows PC.  In a way, this book 
is “configurable”, whereas a user unfamiliar with C++ or Python can just stay with the TASK 
“path” from one chapter to the next, while a more experienced programmer would choose a 
C++ or Python “path” instead.  Other users may choose or design their “personal” paths 
depending on their current skill levels and target goals.  Another possible scenario is for/when 
teaching different levels of students while using the same physical robots (due to budget or 
time constraints perhaps), then the instructor can use TASK for beginning students in parallel 
with Python or C++ for more advanced students. 

 The goals of Volume 1 are to establish the foundational robotics concepts and programming 
techniques for the ENGINEER System using three demonstration robots: 

o The “Simple Bot with Arms” is used to illustrate the basic operations of a purely jointed 
robot using Dynamixels configured in Position Control. 

o The “Pan-Tilt Commando” is used to illustrate the basic operations of a mixed-control 
robot that has some Dynamixels configured in Position Control mode and some 
Dynamixels configured in Velocity Control mode.  

o The “MonoBot” is an unreleased ROBOTIS model that the author used to demonstrate 
several Dual Robots control approaches. 

o For each robot, multiple projects will be showcased first in TASK codes, then the same 
projects are re-coded in MicroPython so that readers can appreciate the “translation” 
requirements and subtleties.  Programming features of the CM-550 will be combined 
with synergistic features from the ENGINEER Mobile App and the RPi0W with Pi 
Camera.  The same projects will also be reviewed and revised by adding the Standard 
Python and C++ features available at the Desktop PC levels such as the OpenCV 
library with USB web cam, along with PySerial and Boost.Asio tools and the 



 

 

ROBOTIS Remocon Packet Protocol to control and acquire sensors data up to two 
robots simultaneously.  

------ 

1.4 ROBOTIS Dynamixel Network 

ROBOTIS considers all their robotics systems as a connection of Dynamixels (i.e. Smart Servos, with 
a few Smart Sensors) on a mixed communications network: 

 The actuators 2XL430 and XL430 are obvious Dynamixels that can be distinguished from 
one another via their IDs from “1” to “17” and these IDs can be changed as needed by the 
user. 

 However, there are “special” Dynamixels that have “reserved” IDs and they are the 
Hardware Controller CM-550 (ID = 200), the Smart Device (ID = 100) which can be a 
Mobile Device (i.e. ENGINEER App), Desktop PC or Single Board Computer.  For the 
ENGINEER System, the RPi Zero W has a reserved ID of “201”.   

 The CM-550 communicates with the XL430 family of actuators at the 1 Mbps rate but only 
at 57.6 Kbps with “ID-100” devices and the RPi Zero W (ID = 201). 

 This Dynamixel network can handle two types of communication packets: Remocon 
(http://emanual.robotis.com/docs/en/parts/communication/rc-100/#communication-packet) 
and Dynamixel Protocol 2 
(http://emanual.robotis.com/docs/en/dxl/protocol2/#introduction).   

Furthermore, the ROBOTIS Dynamixel Network is hierarchical whereas only 1 device can be the 
Top-Controller, i.e. the one capable of sending Protocol 2’s Instruction Packets for either Read or Write 
commands to the “other” Dynamixels which can respond with Status Packets as needed.  The user 
currently can set either the CM-550 or the ID-100 Device to be Top-Controller. 

------- 

 

Fig. 1.8 SBwA robot running a Python/MicroPython application using OpenCV and PySerial. 

This first-use scenario requires intermediate programming level skills and it is best for applications 
that need the services of the TASK/MicroPython and MOTION tools and that can accommodate all 
information transfer between the CM-550 and its Co-Controller within a 16-bit message (unless the 
programmer uses a multiple Remocon message scheme – see Chapter 3).   

This second use scenario would need the integration of the Dynamixel SDK 
(https://github.com/ROBOTIS-GIT/DynamixelSDK) into the programmer’s choice of computer 
programming language and operating system.  This second use scenario is geared towards advanced 
robotics programmers as all the facilities provided by the TASK/MicroPython and MOTION tools will 
have to be re-created from function calls into the Dynamixel SDK, but it offers the most flexible and 
expansive options to the programmer.  And who knows, maybe some users have a need to swap between 
TASK PLAY mode and MANAGE mode for unique robotics applications!   ------ 



 

 

Chapter 2:  SimpleBot With Arms 

Fig. 2.1 shows the original design for the SimpleBot, as it is used in the “Task 3.0 Programming 
Curriculum” (T3PC) manual from ROBOTIS in the first 5 lessons.  SimpleBot’s assembly instructions can 
be found in that document starting on page 367. 

 

Fig. 2.1 Original Design of SimpleBot. 

For a “cooler” look, the author removed Part EF-A12 at two places and replaced them with two 
“Arms” using the following parts: EF-A14 (2), EF-A05, EF-A06, EF-A07 and EF-A08 (see Fig. 2.2).  
This robot can be built from parts of the ENGINEER Kit 1. 

 

 

Fig. 2.2 Details for Left Arm of “SimpleBot with Arms” (SBwA). 

The reader is recommended to read or review the T3PC and PTG manuals, before reading on 
Chapter 2 of this book, as these two manuals illustrate the basic How-To procedures in using 
R+TASK V. 3.1.x for TASK/MOTION and MicroPython.  These topics will not be repeated in this 
book. 

---- 

2.1 Using TASK 

The T3PC manual illustrates an introductory usage level for “Position Control” of the 2XL430-
W250-T actuators via commands such as “Torque On/Off”, “Goal Position” and “Present Position”.  This 
Section 2.1 presents a more complete treatment of concepts and issues encountered by a “roboteer” when 
using the 2XL430-W250-T actuator in its Position Control (or Joint) mode.  The Velocity Control (or 
Wheel) mode for this Dynamixel will be described in Chapter 3.   

Section 2.1 concentrates on five main parameters which are involved in the programming and 
subsequent run-time performance of the “2XL430” in Position Control (PC) mode: 



 

 

 Torque Enable (Address 64 in Control Table for 2XL430). 
 Operating Mode (Address 11). 
 Drive Mode (Address 10). 
 Profile Acceleration (Address 108). 
 Profile Velocity (Address 112). 

--- 

2.1.1 “STEP” Position Control mode (PC Mode 1) 
For a selected 2XL430, the “STEP” mode is achieved by setting both “Profile Acceleration” (PA at 

Address 108) and “Profile Velocity” (PV at Address 112) to “0”.  To better understand the behind-the-
scene process that yielded the run-time performance seen in the previous YouTube video, let’s work 
through an example using Servo ID=1 initially at rest at Position 3072, then its Goal Position (Address 
116) is set to Position 2048 using PC Mode 1.  Externally, we would see Servo ID=1 move to Position 
2048 at the fastest speed possible among these 4 PC modes.   

The author created a TASK program (SBwA_PositionControl_1.tsk3) to perform this example 
command and to monitor the four parameters VT, PT, PreV and PreP during this servo’s movement from 
Position 3072 to Position 2048.  Fig. 2.3 shows the data recorded during the first 100 ms: 

 Overall, this TASK code managed to capture data every 10-12 ms cycle while using a BT-
410 communication setup between the Windows PC and the CM-550 at 57.6 Kbps. 

 VT was found to be set to the same “0” value as ProV, but this “0” value represented a 
velocity impulse of “infinite” magnitude (only in the mathematical sense of course, in reality 
the highest electrical current that could be provided by the CM-550 LiPo battery).  Therefore, 
mathematics wise only, the “theoretical” Goal Position was instantaneously achieved, 
yielding in the “2048” value set for PT. 

 

Fig. 2.3 Typical results for “STEP” Position Control mode during the first 100 milliseconds. 

 Interestingly, PreV showed “0” values for the first two readings, although it was clear that the 
servo was moving from its corresponding PreP data (perhaps these analog velocity voltages 
were too low to be digitized by the CM-550 A/D converter).  Starting from Time=25 ms, 
PreV showed more and more negative values, meaning that the servo was turning CW and 
accelerating. 

 The PreP parameter also showed that the servo motor was accelerating with increasing larger 
value differences between consecutive readings. 

 Another important point for readers to note that Fig. 2.3 represented “typical” results which 
would vary slightly from run to run on the actual robot due to uncertainties in communication 
packet throughputs. 

---- 



 

 

2.1.2 “RECTANGULAR” Position Control mode (PC Mode 2) 
For the 2XL430, the “RECTANGULAR” mode is achieved by setting “Profile Acceleration” (PA at 

Address 108) to “0” and “Profile Velocity” (PV at Address 112) to a positive non-zero value.  See Fig. 
2.10 for the values used for various “Profile Velocities” and “Profile Accelerations” in the example 
program “SBwA_PositionControl_2_mm.tsk3” (the rest of this program uses the same logic as for 
“SBwA_PositionControl_1_mm.tsk3”). 

 

Fig. 2.10 Values used for Profile Velocities and Accelerations in “SBwA_PositionControl_2_mm.tsk3”. 

Please note that the “shoulder” joints (IDs = 1 & 3) are set to a lower Profile Velocity value than for 
the “elbow” joints (IDs = 2 & 4), i.e. the “shoulders” will lag behind the “elbows” at run time. 

In a similar manner as for Section 2.1.1, let us work through an example using Servo ID=1 initially at 
rest at Position 3072, then its Goal Position (Address 116) is set to Position 2048 using PC Mode 2.  
Externally, we would see Servo ID=1 move to Position 2048 at a slower speed than the one for PC Mode 
1.   

The TASK program “SBwA_PositionControl_2_mm.tsk3” monitors the four parameters VT, PT, 
PreV and PreP during this servo’s movement from Position 3072 to Position 2048.  Fig. 2.11 shows the 
data recorded during the first 275 ms: 

 VT was found to be set to “-75” at Time = 6 ms which was the earliest data point that this 
program could collect.  Ones can see that the embedded controller for Servo 1 computed the 
“theoretical” values for the pair VT and PT gradually now, but they are always slightly 
“ahead” of the Present Velocity and Present Position parameters which are essentially the 
results from the VT+PT settings. 

----------- 

 

2.1.3 “TRAPEZOIDAL” Position Control mode (PC Mode 3) 
The 2XL430’s “TRAPEZOIDAL” mode is achieved by setting both “Profile Acceleration” (ProA) 

and “Profile Velocity” (ProV) to a positive non-zero value.  See Fig. 2.13 for the values used for various 
“Profile Velocities” and “Profile Accelerations” in the example program 
“SBwA_PositionControl_3_mm.tsk3” (the rest of this program also uses the same logic as for 
“SBwA_PositionControl_1_mm.tsk3” and “SBwA_PositionControl_2_mm.tsk3”).  The goal for using 
these values is to program the right arm to lag the left arm for all movements.  Please note that 
ProA’s values cannot exceed 50% of ProV’s values.  This link provides more details about the proper 
settings for “Profile Velocity” and also for “Profile Acceleration” in a related way 
(http://emanual.robotis.com/docs/en/dxl/x/2xl430-w250/#profile-velocity112).  

 



 

 

 

Fig. 2.13 Values used for Profile Velocities and Accelerations in “SBwA_PositionControl_3_mm.tsk3”. 

In a similar manner as for Section 2.1.2, we can work through an example using Servo ID=1 initially 
at rest at Position 3072, then its Goal Position (Address 116) is set to Position 2048 using PC Mode 3.  
Externally, we would see Servo ID=1 move to Position 2048 at a slower speed than the one for PC Mode 
2.   

The TASK program “SBwA_PositionControl_3_mm.tsk3” also monitors the four parameters VT, PT, 
PreV and PreP during this servo’s movement from Position 3072 to Position 2048 (using the same logic 
as shown in the earlier Figs 2.8 and 2.9.   

 

Fig. 2.14 Typical results for “TRAPEZOIDAL” Position Control mode 3 during the first 199 ms. 

------- 

2.1.4 “TIMED” Position Control mode (PC Mode 4) 
The last Position Control option is TIME based and this option needs first to be set in the EEPROM 

Parameter “Drive Mode” (Bit 2 = 1, please review beginning of Section 2.1 if needed).  When in a TIME-
based Position Control mode, the parameters “Profile Velocity” and “Profile Acceleration” are still used to 
set up the “Velocity Trajectory” (VT) and “Position Trajectory” (PT), but they will have a completely 
different meaning: their numerical values represent “milliseconds” in a TIMED Position Control 
mode. 

The link http://emanual.robotis.com/docs/en/dxl/x/2xl430-w250/#profile-velocity112 has some 
information about the TIMED Position Control option, but it is not complete.  In actuality, the TIMED PC 
option can accommodate a RECTANGULAR (PC Mode 4-1) or a TRAPEZOIDAL (PC Mode 4-2) profile 
in a similar way as for the PC Mode 2 and PC Mode 3 discussed earlier in Sub-Sections 2.1.2 and 2.1.3 
respectively. 



 

 

Let us first start with the RECTANGULAR-TIMED option as shown in Fig. 2.17 which is a section 
from the TASK code named “SBwA_PositionControl_4-1_mm.tsk3”: 

 Lines 40-43 show that Bit 2 of Address 10 is set to 1 for each Servo ID 1 to 4, to set them into 
Time-based profiles.  Line 42 additionally set Bit 0 to 1 (i.e. using Reverse mode on ID=3 as 
before). 

 Lines 50-51 set the Profile Velocity for IDs 1 and 2 (i.e. right arm) to a value of 2000 ms, while 
Lines 52-53 set the Profile Velocity for IDs 3 and 4 (i.e. left arm) to a value of 1000 ms.  This 
means that the right arm will be twice slower than the left arm for all Goal Position moves. 

 Lines 54-57 set all Profile Accelerations to “0” to obtain a RECTANGULAR Velocity 
Trajectory (see Figs. 2.18 and 2.19). 

----- 

Next, looking back at the previous web link (http://emanual.robotis.com/docs/en/dxl/x/2xl430-
w250/#profile-velocity112), ROBOTIS was showing a TRAPEZOIDAL profile (mainly for Velocity-based 
control) and for Time-based control, they gave only the following formulas: 

 t1 = Profile Acceleration (Address 108). 
 t2 = t3 - t1 
 t3 = Profile Velocity (Address 112). 

Then the author noticed that if t1 (i.e. Profile Acceleration) was set to “0” (like in the current case), then 
the TRAPEZOIDAL shape became a RECTANGULAR shape with t2 as the longer dimension and the 
previous VTmax as the shorter dimension.  However, if this is the case for Velocity-based control, Profile 
Velocity would become the shorter dimension, and ROBOTIS already provided a formula linking t2 and 
Profile Velocity which is: 

 t2 = 64 * ΔPosition / Profile Velocity, except that the author already determined that “66” needs 
to be used for his setup. 

Integrating all these tidbits of information, the author came up with the following three equations to be 
used for any Time-based Profile whether RECTANGULAR (4-1), TRAPEZOIDAL (4-2) or 
TRIANGULAR (4-3): 

 Equation 1:  t1 = Value at Address 108 (so-called Profile Acceleration) 
 Equation 2:  t3 = Value at Address 112 (so-called Profile Velocity) 
 Equation 3:  66 * ΔPosition = VTmax * t1 + VTmax * (t3 – 2 * t1)  

Eq. 3 just represents the “area” under a trapezoidal profile as defined in Fig. 2.20 where the 
term [VTmax * t1] accounts for the areas of the 2 triangular “wings” of the trapezoid and the 
term [VTmax * (t3 – 2 * t1)] represents the rectangular middle part of the trapezoid. 

 

Fig. 2.20 Velocity Trajectory definition for a Time-Based Position Control option  

(i.e. PC Modes 4-1, 4-2 or 4-3).  

------ 



 

 

2.1.5 Position Control with SyncWrite 
“SyncWrite” is a feature of the Dynamixel Protocol 2 

(http://emanual.robotis.com/docs/en/dxl/protocol2/#sync-write) which had been available to users of the 
ROBOTIS Dynamixel SDK for many years, but this is the first time that this feature is implemented at the 
TASK and MicroPython levels.  It is available for the CM-550 only at present 
(http://emanual.robotis.com/docs/en/software/rplustask3/task_parameters/#syncwrite).  “SyncWrite” 
allows the programmer to control multiple Dynamixels with a single (and long) Instruction Packet which 
is very helpful, for example, in the synchronization of Dynamixels comprising a robotic arm or each side 
of a multi-wheeled vehicle (see Chapter 3). 

The TASK program “SBwA_PositionControl_SyncWrite.tsk3” uses a “generic” Function named 
“SW_Goal_Position” to control all 4 servos of the SBwA robot simultaneously (see left panel in Fig. 2.23).  
In this case, the same type of command (i.e. Goal Position at Address 116 – Line 91) was needed for all 4 
servos and the right panel in Fig. 2.23 showed how to use Function “SW_Goal_Position” in the Main part 
of this TASK program.  At present, TASK does not support indexed arrays so individual parameters such 
as “Servo1”, “Servo2”, “Servo3” and “Servo4” need to be used (Lines 12-15).  When using MicroPython 
(see Section 2.2) this function can be written more compactly using a FOR LOOP operating on an indexed 
array of Goal Positions. 

------ 

2.1.6 Motion Play Features: Motion Speed, Stop Page, Joint Offset 
In the author’s opinion, “MOTION Programming” is the most prominent feature in the RoboPlus 

software suite since Version 1 was available circa 2005 for the BIOLOID series.  It is indispensable when 
ones deal with a jointed robot such as a humanoid one, and the use to the UNITY engine since MOTION 
V.2 has made the creation of Motion Units/Pages/Groups so much easier and efficient for the end-user.  
The author recommends readers to read or review Lessons 6 through 8 of the TASK 3 Programming 
Curriculum (T3PC) before proceeding further in this Section 2.1.6.  For a more thorough illustration of the 
MOTION tool with the MINI system, please access the author’s work on the MINI system (Thai, 2020).  
The information described in this work for the MINI is still applicable to the ENGINEER kits except for 
the following additions and changes: 

 The SPEED of MOTION PLAY can be adjusted during run-time for the CM-550.  
 MOTION V.3 adds two new options -2 and -3 for MOTION STOP PAGES for the CM-550.  
 The author’s favorite bug/feature named JOINT OFFSET gets drastically changed for its use 

on the XL430 family of actuators and the CM-550. 

Thus, the emphases in this Section 2.1.6 will be on the above topics. 

The file “SBwA_MotionPlay.mtn3” contains the Motions defined for the “SBwA” robot: 

 Four Single-Keyframe Motion Units (MU) were defined: “Init_Pose”, “Pose_1”, “Pose_2”, 
and “Pose_3” and they corresponded to the Poses with the same name used in various TASK 
programs of Sections 2.1.1 through 2.1.5. 

 Six Motion Lists/Pages were created based on the previous 4 Motions Units.  The first four 
Motion Pages were the same as the four Motion Units.  The 4th Motion Page is named “Pose_1-
3” and it is a sequential list of the Motion Units “Pose_1”, “Pose_2” and “Pose_3”.  The Motion 
Unit “Init_Pose” is used as Exit Motion Unit for each of these MUs.  The 5th Motion Page is 
named “Repeat_Pose_1-3” and it is an Endless Loop of the MUs “Pose_1”, “Pose_2” and 
“Pose_3”.  “Init_Pose” is also used as Exit MU for “Repeat_Pose_1-3”. 

 The Motion Group used for TASK programs in this Section 2.1.6 is named “SBwA_Project1”. 

------ 



 

 

2.1.7 Using Smart Device 
As previously mentioned in Section 1.4, the CM-550 can be programmed to interact with a Mobile 

Device (Android and iOS) via the App named ENGINEER (https://apps.apple.com/us/app/r-
engineer/id1475713920 or https://play.google.com/store/apps/details?id=com.robotis.robotisEngineer) by 
integrating “Smart Device” commands into standard TASK codes. 

There is an extensive list of “SMART DEVICE” commands as shown in this web page 
(http://emanual.robotis.com/docs/en/software/rplustask3/task_parameters/#smart-device) and of example 
TASK  codes showing how to use them.  However, currently (June 2020) this information is not yet 
updated for recent Smart Device updates (for CM-550 only) from TASK 3.1 (some of these CM-550 
specific commands will be showcased in Chapter 3). 

As an example project, the program “SBwA_SD_CameraTracker.tsk3” illustrates how to create 
TASK codes to make the front camera of a Mobile Device track an object of User-assigned Color and to 
move the arms of the SBwA robot accordingly to the data sent from the same Mobile Device.  This 
program also shows two ways to display texts on the Mobile Device’s display. 

As far as TASK 3.1 is concerned, there are two options to access the Mobile Device Display Screen: 
Low-Res (for CM-550 and older controllers such as CM-50/150/530/904) and Hi-Res (CM-550 only).  
The Hi-Res option will be described in Chapter 3 and in this Chapter 2 only the Low-Res option is used 
whereas the Mobile Device’s Display Screen is divided into 25 zones arranged in a 5x5 grid in either 
Portrait or Landscape mode (see Fig. 2.27). 

------ 

2.2 Using MicroPython 

As previously mentioned in Section 1.3, ROBOTIS has released several educational materials for using 
MicroPython with the ENGINEER Kits 1 and 2: the POW and PTG manuals.  The author needs the 
reader to review these materials before reading the rest of Section 2.2.   

A MicroPython program will require about the same number of statements (or less – depending 
on the programmer’s Python skills) than a TASK program to get the CM-550 to do a typical action, 
and its execution speed seems to be on par with an equivalent compiled TASK code (i.e. compiled C/C++ 
code), so the author is quite impressed with the Embedded MicroPython Engine inside the CM-550.  
When combined with Standard Python on the PC or SBC side (see Section 2.3), it will allow the user to 
tap into the vast resources of other Python packages available at the Python Software Foundation 
(https://pypi.org/ and https://docs.python.org/3/contents.html).  The web site Python Central is also a 
great resource for learning and practicing Python programming (https://www.pythoncentral.io/).   

---- 

 

Fig. 2.35 Author’s preferred solution for MicroPython Development. 



 

 

The CM-550’s MicroPython editor is based on PyPlay and it is quite minimal as far as the User Interface 
is concerned.  Thus, the author prefers Thonny (right panel in Fig. 2.35) to do the program editing and 
TASK in MicroPython mode to compile/run his example codes (left panel in Fig. 2.35). 

---- 

2.2.1 “STEP” Position Control mode (PC Mode 1) 
For a selected 2XL430, the “STEP” mode is achieved by setting both “Profile Acceleration” (PA at 

Address 108) and “Profile Velocity” (PV at Address 112) to “0”.  To better understand the behind-the-
scene process that yielded the run-time performance seen in the previous YouTube video, let’s work 
through an example using Servo ID=1 initially at rest at Position 3072, then its Goal Position (Address 
116) is set to Position 2048 using PC Mode 1.  Externally, we would see Servo ID=1 move to Position 
2048 at the fastest speed possible among these 4 PC modes.   

The author created a MicroPython program “SBwA_PositionControl_1.py” to perform this example 
command and to monitor the four parameters vel_traj, pos_traj, pre_vel and pre_pos during this servo’s 
movement from Position 3072 to Position 2048.   

A reminder for readers to visit http://www.cntrobotics.com/engineer for access options to the 
source codes, and let’s have a closer look at the program “SBwA_PositionControl_1.py”.   

Fig. 2.36 illustrates the code segments for importing the “pycm” module (Line 6) and the steps 
needed in the Main Section of “SBwA_PositionControl_1.py”: 

 Line 59 specifies that CONSOLE outputs are directed to the BLE device/port. 
 Lines 60-64 specify the CONSTANTS used in this program. 
 Line 65 calls the User Function init() (see Fig. 2.37). 
 Line 66 prints out an informational message for the programmer. 

 

 

Fig. 2.36 Main Section of “SBwA_PositionControl_1.py”. 

 

 Lines 68-77 list the steps used for the Main Algorithm (e.g. Main Endless Loop): 



 

 

o First, Function pose_1() (see Fig. 2.38) is called to set the SBwA robot into its Pose 1 
(Line 69). 

o Line 70 delays the CM-550 for 3000 ms. 
o Line 71 calls Function pose_2() (see Fig. 2.38) and Line 72 delays for another 3000 

ms. 

------ 

In conjunction with Stop Pages which “stop” the complete robot when executed, there is an “advanced” 
Dynamixel parameter (not listed in the Control Tables for XL430 and 2XL430 actuators) that allow the 
programmer to deactivate specific actuators from the motions previously defined for them in the current 
Motion Group used by the programmer.  Currently (Fall 2020), there is no official ROBOTIS name for this 
parameter and users would have to use Custom Write commands into specific Control Table RAM 
addresses defined by the following formula: 

 RAM Address = 1016 + ID.  For example, if ID = 2, the Address 1016 + 2 = 1018 should 
be used to activate/deactivate Servo 2. 

 A Byte value should be used with this Custom Write command.  By default, a value of “1” 
is written there, so upon robot power up all Servos are enabled.  During run-time, if a value 
of “0” is set to a specific Servo, that specific Servo would just “hold” the Position where it 
was at when it received this command for all subsequent Motion Pages called to be played. 

 For example, a Custom Write command such as ADDR[1018(b)] = 0 can be used to 
deactivate Servo 2. 

------ 

2.2.7 Using Smart Device 
As previously mentioned in Section 1.4, the CM-550 can be programmed to interact with a Mobile 

Device (Android and iOS) via the App named ENGINEER (https://apps.apple.com/us/app/r-
engineer/id1475713920 or https://play.google.com/store/apps/details?id=com.robotis.robotisEngineer) by 
integrating “Smart Device” commands into standard MicroPython codes.   

When using TASK (Section 2.1.7), the reader can access an extensive list of “SMART DEVICE” 
commands and example TASK codes showing how to use them at this web page 
(http://emanual.robotis.com/docs/en/software/rplustask3/task_parameters/#smart-device, but so far (June 
2020) no such documentation exists for the MicroPython tool, except for the MicroPython example 
codes provided for the ENGINEER Kit 2, which were provided without any in-line comments!.  So 
at present, the English reader will have to rely on the R+SMART Control Table (RSCT) which 
unfortunately is only in Korean 
(http://support.robotis.com/ko/software/mobile_app/r+smart/smanrt_manual.htm#Actuator_Address_0B3
) but it can be easily translated into English when using the Google Chrome web browser.  The reader will 
later see that “Smart Device” commands in MicroPython will be mostly “Direct Address” Read/Write 
functions relying on the Addresses and Sizes of Smart Parameters listed in this R+SMART Control Table. 

------- 

 



 

 

 

Fig. 2.65 “Essential” Algorithm used in “SBwA_SD_CameraTracker.py”. 

------- 

2.3 Using OpenCV-Python & PySerial on Desktop 

So far in Sections 2.1 and 2.2, whenever we used the Virtual Remote Controller RC-100, we used it 
to send status information about the 10 RC Buttons U-D-L-R-1-2-3-4-5-6, i.e. a 10-bit message, from a 
Desktop PC to a TASK or MicroPython program running on the CM-550.  These Remocon packets are 
actually 6-bytes long following a protocol described at this web link 
(http://emanual.robotis.com/docs/en/parts/communication/rc-100/#communication-packet) which shows 
that the “useful” message is really only 16-bit long. 

This protocol (also known as Zigbee SDK) had been created by ROBOTIS a long time ago for its 
BIOLOID EXPERT Kit (c. 2005) which was based on the CM-5 Controller (i.e. “ancient” technology!).  
However, this protocol is still quite useful as it allows to bring in Standard Python (therefore a multitude 
of application areas) from a Desktop PC or Single Board Computer (SBC) to work together with the 
ROBOPLUS Software Suite (TASK/MOTION/ENGINEER App).  As previously hinted in Section 1.4, 
the following Dynamixel Network Configuration is implemented for Section 2.3: 

------ 

 



 

 

2.3.1 Python Implementation of Remocon Packet Creation on PC Side 
Currently, the SDK for using Remocon packets is called the Zigbee SDK V. 1.0.2 (c. 2010) and usage  

information can be found at this web link https://github.com/ROBOTIS-
GIT/emanual/blob/master/docs/en/software/embedded_sdk/zigbee_sdk.md.  Unfortunately, it is also called 
the ZIG2Serial SDK (https://github.com/ROBOTIS-
GIT/emanual/blob/master/docs/en/software/embedded_sdk/zigbee_sdk.md#zig2serial) because during the 
ROBOTIS early years (c. 2005), Zigbee technology was used as wireless technology for its BIOLOID series 
with the Controllers CM-5, CM-510 and CM-530, and communications hardware such as ZIG-100/110A, 
ZIG2SERIAL and USB2DYNAMIXEL were used during that period.  Furthermore, the previous GITHUB 
web site provides information for C/C++/C# implementations but there is no Python version for this SDK 
at present.  After some research, the author found that basic functionalities for the ROBOTIS Remocon 
Packet can be reconstructed using the Python BYTEARRAY class  
(https://docs.python.org/3.7/library/stdtypes.html?highlight=bytearray#bytearray) and that the PYSERIAL 
module (https://pypi.org/project/pyserial/, https://pyserial.readthedocs.io/en/latest/pyserial.html) can be 
used to send them from the Desktop PC to the CM-550 using BT-210 or BT-410 receivers which are the 
current Bluetooth modules used for the ENGINEER kits.   

----- 

 

Fig. 2.66 Python’s BYTEARRAY implementation of ROBOTIS Remocon Packet. 

 

The bottom part of Fig. 2.66 shows the Python’s implementation of the ROBOTIS Remocon packet 
using the bytearray class: 

------ 

2.3.2 Handling of Remocon Packet on CM-550 Side 
When the CM-550 receives a Remocon Packet “shaped” by the procedures previously described in 

Section 2.3.1, it goes through a decoding/unpacking process which is slightly different in TASK vs. 
MicroPython because TASK does not support any bit-shift operator.  Thus, the TASK programmer needs 
to fall back on the arithmetic operators like Multiplication for Bitwise Left-Shift (<<) and Division for 
Bitwise Right-Shift (>>).   

Fig. 2.68 shows how a typical Remocon Packet is handled in TASK, with GP-type of packets described 
in the top part of Fig. 2.68 and XY-type of packets described in its bottom part: 

 Both procedures first use a WAIT WHILE Loop based on the “Remocon Data Arrived” Flag, 
i.e. waiting for it to turn TRUE when a new Remocon Packet has just been received by the 
CM-550. 



 

 

 If it is a GP-type packet (top area of Fig. 2.68), Line 24 extracts Bits 12-15 from Parameter 
“MessageReceived” (counting from Bit 0 being the right-most bit) using the Bitwise & 
Operator and the Constant “1111 0000 0000” (or decimal 61440).  Next, Line 25 right-shifts 
this temporary result by 12 bits with the use of the Division Operator and the Constant “1 0000 
0000 0000” (or decimal 4096) and saved this final result into Parameter “ServoID”.  Then with 
Line 26, Parameter “Goal Position” is next extracted from “Message Received” using the 
Bitwise & Operator and the Constant “1111 1111 1111” (or decimal 4095). 

 

 

Fig. 2.68 Decoding/Unpacking of Remocon Packet on CM-550’s side using TASK codes. 

----------- 

The author used a Logitech C270 webcam mounted between the arms of the SBwA robot to search 
for a user-defined colored object.  Fig. 2.70 displays a typical run-time snapshot of the setup used for the 
OpenCV projects.   

 

Fig. 2.70 Run-time setup for OpenCV projects in Section 2.3. 

The OpenCV sections are the same in the example programs SBwA_Color_Tracker_GP.py and 
SBwA_Color_Tracker_XY.py, thus they are described only once herein. 

Fig. 2.71 illustrates needed initialization and checking steps to use the webcam as a VideoCapture 
object: 

 Section 1: 



 

 

o Lines 54 and 55 initialize two 1-D arrays, with 3 elements each, named obj_hsv_lo[3] 
and obj_hsv_hi[3] which will be used to store the tracked object’s HSV Lower and 
Higher Limit values respectively, in a later code section. 

o Lines 56-57 initialize Parameters scan_mode and count to zero. 
o Line 59 creates a 2-D array named kernel with a 20x20 size and fills it up with 1 as 

unsigned 8-bit integers, using the NumPy method named np.ones(). 

 

Fig. 2.71 OpenCV Sections 1 and 2 used in “SBwA_Color_Tracker_GP.py” and 
“SBwA_Color_Tracker_XY.py”. 

----- 

2.4.1 Using ZigBee SDK with VS 2019 
One benefit with using the ZigBee SDK with C/C++ is that its API is well developed with many 

utility functions (https://emanual.robotis.com/docs/en/software/embedded_sdk/zigbee_sdk/).   

This SDK is composed of a Hardware Abstraction Layer (HAL) defined by the files “zgb_hal.h” and 
“zgb_hal.c”.  HAL works at the Windows OS level to do the opening and closing of COM ports using a 
DCB structure (https://docs.microsoft.com/en-us/windows/win32/devio/configuring-a-communications-
resource, https://docs.microsoft.com/en-us/windows/win32/api/winbase/ns-winbase-dcb).  HAL also 
takes care of the actual Transmission and Receiving of the Remocon Packet via Methods zgb_hal_tx() 
and zgb_hal_rx() (see Fig. 2.83).  Fortunately for applications programming, it is not necessary to work 
at this level! 

For applications programming with this SDK, we do however need to get familiar with the contents 
of the files “zigbee.h” and “zigbee.c”.  Fig. 2.84 lists the contents of the file “zigbee.h”: 

 There are 2 Device Control Methods zgb_initialize() and zgb_terminate(). 
 There are 3 Communications Methods zgb_tx_data(), zgb_rx_check() and zgb_rx_data().  
 The Constants for the RC-100 Buttons U-D-L-R-1-2-3-4-5-6 are also defined in this file 

(Lines 19-28). 

 

 



 

 

 

Fig. 2.83 Hardware Abstraction Layer for ROBOTIS ZigBee SDK. 

 

 

Fig. 2.84 Header file “zigbee.h” for ROBOTIS ZigBee SDK. 

----- 

2.4.2 Project “SBwA_Color_Tracker_GP.cpp” 
Let us now get into the details of integrating OpenCV and ZigBee SDK into the project/program 

“SBwA_Color_Tracker_GP.cpp” which has a similar functionality as “SBwA_Color_Tracker_GP.py” 
from Section 2.3.4. 

Fig. 2.86 lists all the needed C++ Preprocessor Directives, in particular: 

 Line 12 enables Function Calls to the ZigBee API 
(https://emanual.robotis.com/docs/en/software/embedded_sdk/zigbee_sdk/).   

 Lines 19-22 enables Function Calls to the OpenCV 4.2 API (https://docs.opencv.org/4.2.0/).   
 Line 24 defines COM15 to be used for the author’s BT-210 receiver which is connected to the 

UART Port on the CM-550.  The reader would need to revise this COM number to fit the 
reader’s usage conditions. 



 

 

 Line 25 defines the TimeOut period (= 1000 ms) for the program to wait for a connection to 
the BT-210 to be made.  The author had found that sometimes more than 1000 ms were needed 
for his setup. 

 

 

Fig. 2.86 Various Preprocessor Directives used in “SBwA_Color_Tracker_GP.cpp”. 

-------- 

Fig. 2.96 lists OpenCV procedures used in Part C of the Main Endless Loop to isolate the previously 
defined Color Blob and to compute its Area Mass Center’s screen coordinates target_x and target_y: 

 Line 246 makes sure this code section is executed only when scan_mode is set to 1. 
 Line 249 picks up a fresh color image frame src from the video camera vid_cam. 
 Line 251 converts src (BGR colors) to hsv (HSV colors) and Line 252 “splits” hsv to its 

separate “color-channel” (i.e. monochrome) images contained a special structure 
HSVchannels defined back in Line 138 of Fig. 2.89 
(https://docs.opencv.org/4.2.0/d2/de8/group__core__array.html#ga8027f9deee1e42716be803
9e5863fbd9). 

 The main reason for the author to use the HSV Color Space is that only the Hue image 
HSVchannel[0] would be needed for Color Tracking in this project.  OpenCV Function 
inRange() is used for this task as shown in Line 255 
(https://docs.opencv.org/4.2.0/d2/de8/group__core__array.html#ga48af0ab51e36436c5d0434
0e036ce981).  Function inRange() takes in 3 inputs: HSVchannel[0], obj_hsv_lo[0] and 
obj_hsv_hi[0] and outputs a new binary image named target which is displayed by Line 256 
using imShow().  However, target usually contains other “noise” pixels and/or “smaller” 
unwanted objects (see Fig. 2.70 and lower left B&W window frame) and thus needs another 
image processing step to “clean” it up. 

 This “clean-up” task is performed by OpenCV Function morphologyEx() at Line 257 using as 
inputs: image frame target, option’s parameter MORPH_OPEN and the special 2D array 
kernel defined back in Line 37 of Fig. 2.87.  This function outputs a new binary image named 
target_opened which is “cleaned-up” but it also “losts” quite a few pixels due to this operation 
(see Fig. 2.70 – lower right B&W window frame).  Fortunately, in this project, the critical 
parameter which is the screen width/x-coordinate of the target’s mass center can still be used 
effectively by the robot to track the color target with its arms.        

 



 

 

 

Fig. 2.96 Part C (OpenCV) of Main Endless Loop in “SBwA_Color_Tracker_GP.cpp”. 

 Next, this B&W image target_opened is used as input to another OpenCV Function named 
moments() to compute various Area/Spatial Moment parameters which are recorded in the 
structure target_moments (Line 259) – see more details at link 
https://docs.opencv.org/4.2.0/d8/d23/classcv_1_1Moments.html#details.    

 If the member parameter target_moments.m00 is found to be larger than 30 pixels (Line 260), 
i.e. a “valid” color target had been found by OpenCV, then the IF structure defined by Lines 
260-266 is activated to compute and print out Parameters target_x and target_y.   

----- 

2.4.3 Project “SBwA_Color_Tracker_XY.cpp” 
If the user prefers to send from the PC the Target Screen Coordinates target_x and target_y instead, 

then the user can load up the program “SBwA_Color_Tracker_XY.cpp”.  All the OpenCV and ZigBee 
SDK procedures will be the same as illustrated in Section 2.4.2, the only difference is in how the Remocon 
Packet is prepared and sent away to the CM-550. 

Fig. 2.98 shows the relevant details for Part D of this “XY” project: 

 A new Flag Parameter xy_key is needed and set to 0 at the beginning of the program 
“SBwA_Color_Tracker_XY.cpp” (Line 134 in the source code). 

 When all the OpenCV procedures are successful in computing a valid value for target_x, the 
code segment (Lines 271-287) is activated: 

o Parameter xy_key is set to 1 (Line 274) and then this value is shifted 12 bits to the left 
in Parameter TxData (first expression in the RHS of Line 275). 

o Next, the current value of target_x is inserted into the lower 12 bits of TxData. 
o TxData is then sent via SDK Function zgb_tx_data() and checked for transmission 

failure by Lines 277-278. 
o A short delay on 100 ms (Line 279) is then used so as not to overwhelm the Bluetooth 

COM service. 
o Lines 282-286 repeat a similar procedure to send target_y data (This code section can 

also be commented out by the user as target_y is not used by the CM-550 in this 
project).   



 

 

Chapter 3:  Commando with Pan-Tilt Platform + Camera 

Fig. 3.1 shows the author’s mechanical modifications to the original design for the Commando robot 
which came with the ENGINEER Kit 2: 

1. Frame part EF25-F18 replaces EF25-F23 used in the original Commando robot (Step 12 in the 
Assembly Manual for Commando) and works as a Pan-Tilt frame for the Pi Camera. 

2. An additional XL430-W250-T is used as Servo 6 which acts as a Pan-Servo while the original 
Servo 5 acts as a Tilt-Servo. 

3. Wheels, i.e. rubber tires, are used instead of the caterpillar tracks. 

A BT-210 receiver (not provided in the ENGINEER Kits 1 and 2) is connected to the UART Port of 
the CM-550 and allows serial communications to the Desktop PC, while the built-in BT-410 is used to 
communicate with a Mobile Device via the ENGINEER App.  The RPi Zero W SBC communicates to the 
CM-550 via the OTG USB cable as provided by ROBOTIS, and also to the Mobile Device via WiFi  
(https://emanual.robotis.com/docs/en/edu/engineer/kit2_reference/#setting-video-streaming-on-robotis-
engineer-app) for video streaming. 

 

Fig. 3.1 Pan-Tilt Commando (PTC) robot with RPi0W and Pi Camera. 

The use of the RPi Zero W will require more care from the user as he/she will have to wait up to 4 
minutes upon powering up the Commando robot as configured in Fig. 3.1, because the RPi SBC does 
take a long time to boot up and to execute its default ROBOTIS application software.  The Commando 
will be ready for further use when the START/USER LED on the CM-550 lights up YELLOW as 
shown in Fig. 3.1 (inside the Yellow Circle).  Then the user can use the robot to work with the ROBOTIS 
tools such as MANAGER and TASK as normal.  Fig. 3.2 shows that MANAGER sees the RPi-Zero-W as 
another DYNAMIXEL with an ID=201 (which should not be changed by the user). 

Please note that if the user runs MANAGER before the CM-550’s START/USER LED turns 
YELLOW, the MANAGER tool will only show the connections to the CM-550 and the XL430-
W250 servos. 

 



 

 

 

Fig. 3.2 MANAGER shows connection to the RPi Zero W as DXL(201). 

---- 

3.1 Using MANAGER for Pi Camera 

Let us use MANAGER to obtain an overview of the functionalities of the “RPi0W+Camera”, a.k.a. 
Dynamixel 201.   

Fig. 3.4 lists the basic functionalities/addresses that a programmer would need to use: 

 Address 11 or RPi Mode: 
o Standby (= 0), used to terminate any other RPi Mode currently active. 
o Color Detection (= 1), used to find a given color set at Address 55 or Sub-Mode (7 

preset colors from Red to White).  The detected color blob also has its area properties 
computed and available to the programmer via Addresses 60, 62 and 64 (see Fig. 
3.5). 

o Face Detection (= 2), used to detect a face along with its gaze’s direction, to 
determine which eye is open and whether the face is smiling, also to provide the eyes 
distance. 

o Video Streaming (= 3), used to stream video from the Pi Camera to a Mobile Device 
running the ENGINEER App (at very slow frame rates). 

o Marker Detection (= 4), used to recognize the ROBOTIS 2-D markers (No. 1 to 6).  
Addresses 60-64 also report on the Marker’s area properties and Address 66 provides 
the Detected Marker Number determined by the RPi Marker Recognition algorithm 
(see Fig. 3.5). 

o Line/Lane Detection (= 5).  Currently, only the first two Line Angles in degrees are 
reported in Addresses 68 and 69, respectively. 

----- 

3.2 Using TASK 

As previously mentioned in Section 2.1.7, the ENGINEER App has a new Hi-Res Display mode for 
its Touch/Display screen when programming in TASK or MicroPython, i.e. the CM-550 programmer can 
now access the native pixel resolutions of the Mobile Device’s Graphics Display at the SMART 
Addresses 10460 (i.e. Screen Width = [0-65535]) and 10462 (i.e. Screen Height = [0-65535]). 

The reader may also recall from Section 2.1.7 that when the Mobile Display is used as an Output 
Device for a possible “Text”, “Shape” or “Number” Item, the programmer needs first to “prepare” a 32-



 

 

bit integer Screen Position Parameter (SPP) which has the combined information from 4 separate 
parameters, of 8 bits each, designated as the said Item’s Position No, Item No, Size No and Color No.  
When using the Low-Res Display option, Parameter Position No can take on values between 1 and 25. 

When using the Hi-Res Display option, the programmer needs to follow a 3-step procedure: 

1) Assign 0 to Parameter Position No. 
2) Assign SMART Parameters Display Position X (Address 10480) and Display Position Y 

(Address 10482) with appropriate native pixel row and column coordinates. 
3) Then the programmer can issue SMART Display Text/Shape/Number commands as 

normal. 

3.2.1 Hi-Res Display of Random Finger Touches  
In this project “PTC_SD_HelloWorld_RandomTouch_HiRes.tsk3”, the goal is to display Text Item 1 

“Hello World!” in Hi-Res mode and in random Colors/Sizes wherever the user happens to press on the 
Mobile Display with one or two fingers. 

The program “PTC_SD_HelloWorld_RandomTouch_HiRes.tsk3” uses the CM-550’s UART port 
(BT-210) to act as the REMOTE Port and as the TASK PRINT Port back to the Desktop PC.  While the 
embedded BT-410 (APP Port) is used to communicate with the ENGINEER App running on the Mobile 
Device. 

------ 

3.2.2 Wheel Synchronization & Maneuver Compensation with IMU 
The Pan-Tilt Commando (PTC) robot uses a total of six XL430-W250 (single-servo) actuators: servos  

with IDs from 1 to 4 are configured in Wheel mode and servos with IDs 5 and 6 are configured in 
Position Control mode.  Back in Section 2.1.5, the author demonstrated how to synchronize Goal Position 
commands to multiple actuators using the Synch-Write procedure.  For synchronization of multiple 
actuators in wheel mode, we can use a different technique based on the concept of “Secondary/Shadow 
ID” at Address 12 of the XL430-W250 Control Table (https://emanual.robotis.com/docs/en/dxl/x/xl430-
w250/#secondaryshadow-id12).   

Let’s recall that an actuator’s Primary ID is unique within the Dynamixel Network of a ROBOTIS 
system and it is represented by Parameter ID at Address 7 
(https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/#id7).  For example, in Fig. 3.1, the back servo 
on the right of the PTC robot has a Primary ID of 3 at Address 7, but it can also be assigned a Shadow ID 
of 1 at Address 12.  From then on, whenever the TASK program issues a Goal Velocity command to 
ID=1, both servos 1 and 3 move together in synchronization, but if the TASK program issues a Goal 
Velocity command to ID=3, only servo 3 would move. 

The project “PTC_RC_IMU_SD_RPi_VS.tsk3” illustrates the combination of “Sync-Write” and 
“Shadow-ID” techniques to the Wheel Servos (ID = 1 to 4), and for Servos 5 and 6 the use of the 
Embedded IMU to autonomously keep the Pan-Tilt platform oriented in its original direction, even when 
the user remotely controls the robot wheeled chassis to go into other directions.  Furthermore, the Pi 
Camera is used in Web Streaming mode to the Mobile Device to serve as a visual check of the run-time 
performance for the IMU-based maneuver-compensating algorithm used. 

We will go through the details of the local Functions used in this project first.  Fig. 3.9 shows Part 1 
of Function Init() of “PTC_RC_IMU_SD_RPi_VS.tsk3” whereas parameters within the EEPROM area 
of the XL430-W250 actuators are modified: 

 Line 146 turns Torque/Power Off on all actuators so that their EEPROM areas can be 
modified. 

 The first FOR LOOP (Lines 147-150) sets the Drive Mode (Address 10) to 0, i.e. Normal 
mode and Velocity-Profile Control for Servos 1 to 6. 



 

 

 The second FOR LOOP (Lines 151-154) sets the Operating Mode (Address 11) to 1, i.e. 
Velocity Control (Wheel) mode for Servos 1 to 4. 

 Line 155 synchronizes Servo 3 to Servo 1 by setting its Shadow ID (Address 12) to 1. 

---- 

 Please note that this procedure works even better with more wheel servos used on each side 
of the robot! 

 

Fig. 3.12 “Go_Forward” and “Turn_Right” maneuvers for “PTC_RC_IMU_SD_RPi_VS.tsk3”. 

 

Fig. 3.13 shows that another SyncWrite scheme is used to set Goal Positions for Servo 5 and Servo 6 
for two example actions “Right_Pan” and “Up_Tilt” with the Pan-Tilt platform: 

 Function Right_Pan() shows that it would decrease the current Pan_Position (Servo 6) by 5 
units each time that it is called during run-time.  However, Pan_Position has an upper limit 
of 1396 that Servo 6 cannot go beyond and additionally Function Alarm_GP() would be 
called to sound off a buzzer signal for this situation (see Fig. 3.14). 

Similarly, Function Up_Tilt() shows that it would increase the current Tilt_Position (Servo 5) by 5 units 
each time that it is called during run-time.  However, Tilt_Position has an upper limit 

------- 

3.2.3 Pi Camera: Color Detection & Visual Servoing/Ranging   
In this project, the Pi Camera is put into its Color Detection mode (ID[201]:Address 11 = 1).  When 

in this mode, the Pi Camera provides live data regarding the XY camera coordinates of the Mass Center 
of the Tracked Color-Blob and its size (i.e. number of pixels occupied by this blob).  Unfortunately, there 
is no facility for the Pi Camera to display the live image that it is processing at the same time, i.e. no 
visual confirmation for the programmer/operator.   

The goal of the program “PTC_RC_VSR_SD_RPi_CD.tsk3” is to use the Color-Blob’s Center 
Coordinates and its Pixel Size to control the Pan-Tilt platform to keep the Blob centered within the Pi 
Camera View Port and also to maneuver the PTC robot’s wheels in an appropriate direction to keep the 
Blob’s Pixel Size within a range of its Original Size, when the Blob was first captured.  This program 
uses an overall logical structure similar to the one used for “PTC_RC_IMU_SD_RPi_VS.tsk3”, except 



 

 

that the IMU compensation task is replaced with a “simple” Visual Servoing/Ranging (VSR) task using 
the Pi Camera in Color Detection mode.  Thus, the common code sections will just be mentioned in 
passing. 

-------- 

Fig. 3.23 shows Part 2 of the Main Function for “PTC_RC_VSR_SD_RPi_CD.tsk3”: 

 For some reasons, the author had found that resetting the Pi Camera mode (Line 25), before 
setting the Pi Camera to its Color Detection mode, created some run time problems for the 
author’s code, thus Line 25 was commented out.  Thus, if needed to, the reader can 
uncomment Line 25 for his/her needs. 

 

 

Fig. 3.23 Part 2 of Main Function in “PTC_RC_VSR_SD_RPi_CD.tsk3”. 

 

 Line 28 sets the Pi Camera to its Color Detection mode, and the 2 second time delay (Line 
29) is needed to let the RPi0W and Pi Camera to “settle down” in this new operating mode. 

 Line 31 sets the Pi Camera’s resolution to 352x288, but the actual resolution obtained is only 
320x240 (as reported by Lines 37-38).  The author had also tried the 640x480 mode, but still 
only the 320x240 mode is obtained at run time. 

 Line 34 set the Pi Camera’s Sub-Mode to “5”, i.e. for Blue Color to track. 

----- 

3.2.4 Color Track Following Using Pi Camera  
Fig. 3.31 shows how the author configured the Pi Camera as a Color Line Detector whereas Servo 5 

can be used to “tilt” the camera’s viewport closer (best) or further away from the front wheels.   

There are two options for using the Pi Camera as a Color Line Detector: 

1. Option 1 is to set the Pi Camera into its Color Detection mode (i.e. Address 11 set to 1) and 
to make use of the X-coordinate of the Mass Center of the Blob that comprises the portion of 
the Color Track that happens to be within the Pi Camera’s viewport at runtime.  In this mode, 
the Pi Camera’s maximum image resolution is 320x240 pixels. 

2. Option 2 is to use the Pi Camera’s own Line Detection mode (i.e. Address 11 set to 5).  In 
this mode, the Pi Camera’s maximum image resolution is 160x120 pixels.  Internally, this 
image is further divided into two halves: Zone 1 is closer to the robot’s front wheels and Zone 



 

 

2 is further ahead of the robot (see Fig. 3.31).  Each zone is then processed separately to yield 
two “Line Angles” (Addresses 68 and 69) that represent an overall direction of the Color 
Track within each zone: 

a. If the Color Track goes straight forward ahead of the robot, these Line Angles would 
have numerical values close to 90 degrees. 

b. If the Color Track diverges to the left of the robot, these Line Angles would have 
numerical values greater than 90 degrees. 

c. If the Color Track bends to the right of the robot, these Line Angles would have 
numerical values smaller than 90 degrees. 

 

 

Fig. 3.31 Pi Camera’s Setup for Color Line/Track Detection. 

---- 

3.2.5 Scheduling Maneuvers Using ROBOTIS QR Markers  
The ENGINEER Kit 2 also provides 6 QR-type markers which are implemented with the project 

“PTC_RC_SD_RPi_MKR.tsk3” presented herein: 

 Marker 1 stands for “Start”. 
 Marker 2 stands for “Forward”. 
 Marker 3 stands for “Backward”. 
 Marker 4 stands for “Left Turn”. 
 Marker 5 stands for “Right Turn”. 
 Marker 6 stands for “Delay 1s”. 

To put the Pi Camera into the Marker Detection mode, its Address 11 needs to be set to 4 (see Line 
27 in Fig. 3.43), then at runtime when a legitimate marker is presented to the Pi Camera at a distance 
around 30 cm or 12 inches, the programmer can check on 4 Parameters (which should be greater than 0 at 
that time) via a TASK Custom Command: 

 Addresses 60 and 62 for the X-Y Screen Coordinates of the Mass Center for the Detected 
Marker.  A screen resolution of 320x240 pixels is used in the Marker Detection mode. 

------ 

3.2.6 Dual-Bot RC Using ZigBee Broadcast 
This project illustrates how to use ROBOTIS ZigBee Broadcast technology 

(https://emanual.robotis.com/docs/en/parts/communication/zig-110/#nn-communication) to allow the 
control of two CM-550 robots from a single TASK Output Monitor window on the Desktop PC (see Fig. 
3.50): 



 

 

 The first robot is the PTC with Pi Camera set to Video Streaming to a Mobile Device while 
being remotely controlled and it is also capable to send back sensor data to the PC on 
demand. 

 The second robot is the MonoBot which is only programmed to be remotely controlled but 
able to send sensor data back to the PC on demand. 

 

 

Fig. 3.50 PTC with Pi Camera and MonoBot. 

Although the ROBOTIS ZigBee technology dated back from c. 2005, designed for use with the CM-5 
and CM-510/530 controllers, it is still the only broadcast wireless technology from ROBOTIS at present.  
However, some of its components such as USB2DYNAMIXEL and ZIG-110A are discontinued since c. 
2019.  Consequently, it may be hard for some readers to repeat this project, but the concepts described 
here in apply to all ROBOTIS controllers as it is based on the Remocon Packet.  Hopefully in a few 
years, ROBOTIS would release a new BT module based on Bluetooth V. 5, supporting Mesh Networks, 
which would boost the runtime performance of this project.   

------ 

3.3 Using MicroPython 

As previously mentioned in Section 2.2.7, only the ENGINEER App can use a new Hi-Res 
Display mode for its Touch/Display screen when programming in MicroPython (and TASK): i.e. the 
CM-550 programmer can now access the native pixel resolutions of the Mobile Device’s Graphics 
Display at the SMART Addresses 10460 (i.e. Screen Width = [0-65535]) and 10462 (i.e. Screen Height = 
[0-65535]). 

The reader may also recall from Section 2.2.7 that when the Mobile Display is used as an Output 
Device for a possible “Text”, “Shape” or “Number” Item, the programmer needs first to “prepare” a 32-
bit integer Screen Position Parameter (SPP) which has the combined information from 4 separate 
parameters, having  8 bits each, designated as the said Item’s Position No, Item No, Size No and Color 
No.  Lastly, when using the Low-Res Display option, Parameter Position No can take on values between 
1 and 25. 

However, when using the Hi-Res Display option, the programmer needs to follow a 3-step procedure: 

1) Assign 0 to Parameter Position No. 
2) Assign SMART Parameters Display Position X (Address 10480) and Display Position Y 

(Address 10482) with appropriate native pixel row and column coordinates. 
3) Then the programmer can issue SMART Display Text/Shape/Number commands in the 

same way as for the Low-Res case. 



 

 

 

3.3.1 Hi-Res Display of Random Finger Touches  
In this project “PTC_SD_HelloWorld_RandomTouch_HiRes.py”, the goal is to display Text Item 1 

“Hello World!” in Hi-Res mode and in random Colors/Sizes wherever the user touches on the Mobile 
Display with one or two fingers. 

The program “PTC_SD_HelloWorld_RandomTouch_HiRes.py” uses the CM-550’s UART port (BT-
210) to act as the REMOTE Port (CM-550’s Address 43) and as the TASK MONITOR Port (CM-
550’s  Address 35) to connect to the Desktop PC.  While the embedded BT-410 (APP Port – CM-550’s 
Address 36) connects to the ENGINEER App running on the Mobile Device (see Lines 8-10 in Fig. 3.64).  
Please note that DXL(200) refers to the CM-550 Controller as a programming object. 

 

Fig. 3.64 Initialization Steps used in “PTC_SD_HelloWorld_RandomTouch_HiRes.py”. 

------ 

Please note that a similar code segment is needed for the user’s Second Touch (i.e. working with 
Paramters touch2_X and touch2_Y), which is included in the actual Python code, but it is not shown in 
this Section 3.3.1.  Fig. 3.67 shows a typical run-time result on the Mobile Display. 

 

Fig. 3.67 Run-time Mobile Display obtained for “PTC_SD_HelloWorld_RandomTouch_HiRes.py”. 

------- 

We will go through the details of the local Functions used in this project first.  Fig. 3.68 is a listing of 
Function Init() of “PTC_RC_IMU_SD_RPi_VS.py” whereas parameters within the EEPROM and RAM 
areas of the XL430-W250 actuators are modified: 

 Line 10 turns Torque/Power Off on all actuators so that their EEPROM areas can be 
modified. 

 For Servos 1 to 6, the first FOR LOOP (Lines 11-12) sets their Drive Modes (Address 10) to 
0, i.e. Normal mode and Velocity-Profile Control.  Please note the MicroPython difference in 



 

 

setting the upper limit for the loop counter “i” (i.e. 7), as compared to TASK coding (i.e. 6 - 
see Fig. 3.9). 

 For Servos 1 to 4, the second FOR LOOP (Lines 13-14) sets their Operating Modes (Address 
11) to 1, i.e. Velocity Control or Wheel mode. 

 Line 15 synchronizes Servo 3 to Servo 1 by setting its Shadow ID (Address 12) to 1. 
 Line 16 synchronizes Servo 4 to Servo 2 by setting its Shadow ID (Address 12) to 2. 
 For Servos 5 and 6, the third FOR LOOP (Lines 17-18) sets their Operating Modes (Address 

11) to 3, i.e. Position Control mode for Servos 5 and 6. 
 Line 19 sets Address 44, i.e. Velocity Limit = 250 for the servos in Wheel Mode (i.e. Servos 

1 to 4). 
 Line 20 reestablishes power to all servos, i.e. to save the new settings into the EEPROM area.  

From now on, only parameters in the RAM area can be modified safely. 
 For Servos 1 to 4, the fourth FOR LOOP (Lines 22-23) sets the Goal Velocity (Address 104) 

to 0, i.e. stops the PTC robot. 

 

 

Fig. 3.68 Function Init() for “PTC_RC_IMU_SD_RPi_VS.py”. 

------- 

Fig. 3.78 defines various image-related parameters that are used in the VSR algorithm: 

 The gray rectangle on the right panel in Fig. 3.78 represents an image captured by the Pi 
Camera and the blue rectangle within it represents the “target area” where the VSR algorithm 
would strive to keep the “target object” within it at run-time by using the Pan-Tilt platform 
(i.e. Servos 5 and 6) and when necessary to maneuver the whole robot via its wheels (i.e. 
Servos 1 to 4). 

 Please note that the Pi Camera sets the Bottom Left Corner of its Image Frame as the Origin 
of the X-Y coordinate axes. 

 Line 143 defines Parameter x1 which marks the centerline of the captured image. 
 Lines 142 and 144 define respectively Parameters x1 and x3.  Together these 3 parameters 

divide the captured image into Zones A, B and C as shown in Fig. 3.78. 
 At run-time, if the “target object” is located within Zone A or Zone B, the PTC robot would 

use its wheels to maneuver itself (left or right) so that the “target object” is brought into Zone 
C.  This is the first type of robot control actions. 

 For the second type of robot control actions, if the “target object” is found to be in Zone C, 
then the Pan-Tilt platform is activated (Left/Right and Up/Down) to keep the “target object” 



 

 

within the blue “target area” using Parameters object_WL, object_WR, object_WD and 
object_WU defined by Lines 145-148. 

 As a third type of robot control actions, the PTC robot can also go forward or backward to 
keep the object’s total pixel area within a range defined by Parameters object_Area_Low 
and object_Area_High (Lines 152 and 153). 

 

 

Fig. 3.78 Parameters used in the VSR Algorithm of “PTC_RC_VSR_SD_RPi_CD.py”. 

-------- 

Fig. 3.89 lists the code section (within the Main Endless Loop) that would be executed once Button 5 
(i.e. MKR_set) or Button 6 (i.e. MKR_reset) is tapped by the user at run time: 

 Lines 233-242 are executed if (MKR_set > 0) – i.e. when RC Button 5 is tapped: 
o Text Item 13 (“Marker Node On“) is displayed in Yellow on the Mobile Device’s 

Screen at Position (3, 3) (Line 233). 
o MKR_Control is set to TRUE (Line 234). 
o Line 235 starts playing Melody 0 out of the CM-550 buzzer (5 seconds duration), but 

please notice that buzzer.wait() is pushed down to Line 241, so that the intervening 
statements are executed while the music is being played. 

o Line 236 stops the robot. 
o Lines 237 and 238 initialize Parameters marker_current and marker_index_max 

to the value of -1.  They will be later used in Functions add_marker_list() and 
run_marker_list(). 

o The FOR LOOP (Lines 239-240) initializes all 8 elements of the ByteArray 
markers[] to zero. 

o Lastly, MKR_set is reset to 0 (Line 242): this step is done to make sure that Lines 
233-242 are executed only once per user’s push on RC Button 5. 

 Similarly, Lines 244-247 are also executed ONCE if (MKR_reset > 0) – i.e. when RC 
Button 6 is tapped: 

o Text Item 0 (i.e. “nothing”) is used to clear the Mobile Display of any previous Text 
Item displayed at Position (3, 3) - (Line 244). 

o MKR_Control is set to FALSE (Line 245). 
o Line 246 stops the robot. 
o Lastly, MKR_reset is reset to 0 (Line 247): this step is done to make sure that Lines 

244-247 are executed only once per user’s push on RC Button 6. 

 



 

 

 

 

Fig. 3.89 Code Sections responding to User’s Push on Buttons 5 or 6 in “PTC_RC_SD_RPi_MKR.py”. 

------------- 

Please also note that Fig. 3.95 indicates that the user can push on several RC-100 keys at the same 
time during run time, as each of these keys are “parsed-out” separately (Lines 176-183). 

 

 

Fig. 3.96 IF-ELSE and IF-ELSE-IF structures used to determine robot’s actions in 
“PTC_BRC_ZGB_SD_RPi_VS.py”. 

 

Fig. 3.96 shows that to make the PTC robot perform a maneuver, the user has to combine a Button 
among the usual U-D-L-R Button with either Button 1 to make (Robot1 > 0) OR Button 4 to make 
(All_Robots > 0) (Line 189 of Fig. 3.96). 

The IF-ELSE-IF structure represented by Lines 190-197 indicates that only 1 Maneuver Direction 
among F/B/L/R is allowed at any one time. 

--------- 



 

 

3.4 Using Standard Python 

In this Section 3.4, the author’s goals are to use Standard Python to enhance the existing capabilities 
of the CM-550 as illustrated in Section 3.2 and 3.3 by using a Desktop PC as a Supervisory or Direct 
Controller to the CM-550 and also to implement a USB webcam as an alternate solution to the Pi Camera. 

3.4.1 USB Camera: Color Detection & Visual Servoing/Ranging  
Using a wired USB camera is not ideal with a mobile robot like the PTC robot as the “wire” may get 

entangled with the robot itself and therefore prevents its proper operation.  But a wired USB camera is 
readily available to most users, thus the author developed this project with the goal of comparing its 
runtime performance with the one obtained with the Pi Camera in Section 3.3.3. 

Fig. 3.104 shows the PTC with a Logitech C270 attached to the Pan-Tilt platform with the unused Pi 
Camera moved to the Controller area behind the Logitech web camera.  The C270 camera is set to the 
640x480 pixel resolution mode, i.e. 4 times the resolution of the Pi Camera when it is in Color Detection 
mode (see Section 3.3.3).  The C270 is controlled by a Standard Python program running on a Windows 
Desktop PC using the OpenCV package (V. 4.4.0.42).   

 

 

Fig. 3.104 PTC Robot with Logitech C270 Web Cam in “PTC_RC_Color_Tracker_XY.py”. 

 

This configuration allows the exploration of two robot control approaches: 

1. The first approach is to recreate an operating environment equivalent to the one used with the 
Pi Camera in Sections 3.2.3 and 3.3.3, thus the PC does the Target/Object Detection work 
and sends the resulting data such as Target Area and Target X-Y coordinates, via Remocon 
packets, over to the PTC Robot which would then make its own appropriate Visual Servoing 
and Ranging tasks.  Essentially, the Desktop PC is acting as a glorified Camera Sensor to the 
CM-550.  The resulting programs from this first approach are named 
“PTC_RC_Color_Tracker_XY.py” and “PTC_RC_VSR.py/tsk3”. 

------- 

Please note that, for at least every THREE iterations of the Main Endless Loop, the VSR 
Algorithm is activated ONCE (controlled by Lines 264-266 and Line 232), during which the Pan/Tilt 
Platform AND/OR the PTC Wheel Platform may be activated so as to keep the Color Target within the 
Image Frame’s Center. 

 



 

 

 

Fig. 3.119 Part 5 of Main Endless Loop in “PTC_RC_VSR.py”. 

------- 

3.4.2 Dual-Bot RC Using ZigBee Broadcast  
In this project, the ROBOTIS ZigBee Hardware (in Broadcast mode) is applied once again between 

the Desktop PC and the two Robots PTC and MonoBot (please review Section 3.3.6 if needed).  
However, the TASK Output Monitor Tool used in Section 3.3.2 will be replaced by a Standard Python 
application written to act as a more general-purpose ZigBee Central Station capable of sending and 
receiving Remocon Packets to and from both robots. 

The resulting Python solutions are named “PTC_MB_ZGB_Central.py” for the PC, 
“MB_BRC_ZGB_ID.py/tsk3” for the MonoBot, and “PTC_BRC_ZGB_SD_RPi_VS_ID.py/tsk3” for the 
PTC Robot. 

The requirements/features of the program “PTC_MB_ZGB_Central.py” are listed below: 

1. The Operator uses the PC keyboard as the Robot Control Interface: 
a. Key 1 is programmed to be PUSH-ON/PUSH-OFF to indicate whether Robot1 

(PTC) is under the Operator’s control. 
b. Key 2 is also programmed to be PUSH-ON/PUSH-OFF to indicate whether Robot2 

(MonoBot) is under the Operator’s control. 
c. U/D/L/R Arrow keys are used in conjunction with Key 1 or Key 2 to move the 

specified robot(s) (either one or both) in the usual maneuver directions F/B/L/R.  To 
accommodate the special control requirements of the MonoBot (see Fig. 3.101), up 
to 2 Arrow keys can be pressed by the Operator at any one time to control the robots. 

d. Key 3 is also of the type PUSH-ON/PUSH-OFF and is also used in conjunction with 
Key 1 or Key 2 to trigger a Sensor Read mode for either or both robots which would 
then send their own specified sensor reads continuously to the PC (when Key 3 is 
ON). 

-------- 

Fig. 3.128 describes Part 3 of the Keyboard Processing Procedures used in 
“PTC_MB_ZGB_Central.py” which is activated when the Operator pushes on Button/Key 1 to 
select/deselect the PTC robot for subsequent Maneuver and Sensor Read commands: 



 

 

 

Fig. 3.128 Part 3 of Keyboard Processing Procedures in “PTC_MB_ZGB_Central.py”. 

-------- 

Once one or two robots are chosen by the Operator with Key 1 or Key 2, the Operator can next push 
on Key 3 to activate the Sensor Read mode which is “automatic/autonomous” (U/D/L/R Keys are still 
actionable).  Coding for the Sensor Read mode is listed in Figs. 3.134, 3.135 and 3.136.  Fig. 3.134 shows 
Part 1 of the Sensor Read procedure which is only activated if (sensor_mode == True) (see Line 276): 

 

Fig. 3.134 Part 1 of the Sensor Read Procedure in “PTC_MB_ZGB_Central.py”. 

------- 

3.4.3 Dual-Bot Relay-RC Using ZigBee Broadcast  
At present, only the ROBOTIS ZigBee hardware allows another interesting communications 

configuration that offers a “relay” type of network (as the author tries to stay away from using the term 
“mesh” network offered by Bluetooth V.5, perhaps available in future ROBOTIS communications 
hardware).  Once again, the PC acts as the ZigBee Central Station in broadcast mode.  However, one of 
the two robots used in Section 3.4.2 will act as a Mid/Relay Station (PTC) and will be put near the limit 
range of the ZIG-100/110 antennas (~10 feet indoors, at least for the author’s environment) from the PC.  
While the second robot (MonoBot) will be located beyond the first ZigBee range, so that the PC can 
effectively only communicate with the Mid/Relay Station (PTC), but the PTC can communicate with both 
the PC and the MonoBot.  The PTC then needs to have a scheme to pass along packets destined for the 
PC or for the MonoBot, whenever the PTC happens to receive such packets during its operations.  
Previously, in Section 3.4.2, PTC was Video Streaming to the ENGINEER Mobile App during its 



 

 

operations, but this task is removed from PTC’s repertoire in this Section, while new features are added as 
listed below. 

The resulting Python solutions are named “PTC_MB_ZGB_Central_Relay.py” for the PC, 
“MB_BRC_ZGB_Relay.py/tsk3” for the MonoBot, and “PTC_BRC_ZGB_Relay.py/tsk3” for the PTC 
Robot. 

---------- 

3.4.4 Dual-Bot RC Using Dual BT-210s with PySerial  
Fortunately for Standard Python users, the PySerial Module is written to handle the use of multiple 

RS-232 COM ports simultaneously, so the communications programming approach used in this project is 
straight forward:  

1. For each robot (PTC and MonoBot), use a different BT-210 module connected to the UART 
Port for each CM-550.  The PC’s Windows 10 OS already can handle multiple BT-210s 
easily. 

2. Create and Associate COM Device ser1() with the PTC robot, and COM Device ser2() with 
the MonoBot. 

This project “PTC_MB_DBT_Central.py” is essentially an adaptation of the previous project 
“PTC_MB_ZGB_Central.py” which was already described in detail in Section 3.4.2.  Thus, only the 
relevant changes are reported in this Section 3.4.4.   

Fig. 3.164 shows the needed changes for the usage of the PySerial module: 

 Two separate PySerial devices are now needed: ser1 for the PTC robot and ser2 for the 
MonoBot (Lines 83-84). 

 

Fig. 3.164 Usage of PySerial Module in “PTC_MB_DBT_Central.py”. 

------ 

 

3.5 Using C/C++  

This Section 3.5 is written as a continuation of Section 2.4.3 whereas the ROBOTIS ZigBee SDK 
was introduced to the reader with the project “SBwA_Color_Tracker_XY.cpp”, which only needed to 
send Remocon packets from the Desktop PC to the CM-550 based robot running either on TASK or 
MicroPython codes.  In Section 3.5, we will explore more concepts and techniques in shaping the 16-bit 
Remocon Message to contain more information regarding actuators and sensors in the transmission and 
reception of single or multiple Remocon Packets, between the Desktop PC and one or two CM-550 
robots, and using ZigBee and Bluetooth communications hardware. 



 

 

Section 3.5 is also written as a parallel development of the concepts and techniques developed in 
Section 3.4 for Python, but now they will be translated/adapted into C/C++ codes: for example, Section 
3.4 used PySerial as an alternative to using the ROBOTIS ZigBee SDK, while Section 3.5 will be 
showcasing the use of the Boost.Asio library.  Thus, if the reader happens to get to this Section 3.5 from 
Section 2.4, the author is apologizing that he will need to refer the reader back to some materials 
developed back in Section 3.4. 

Fig. 3.168 illustrates the robots used in developing projects in this Section 3.5: “Pan-Tilt Commando” 
(PTC) with a Logitech Webcam C270 (as an alternate solution to the Pi Camera) and “MonoBot”. 

------- 

 Please note the important Line 355 which sets stop_once to TRUE which makes the above 
procedure execute only once for each time that the Operator releases all Keys. 

 

Fig. 3.173 Last Procedure of Standard RC mode used in “PTC_RC_Color_Tracker_XY.cpp”. 

--------- 

 

Fig. 3.174 Procedures used to send Target Pixel Area and Screen Coordinates X/Y to PTC in 
“PTC_RC_Color_Tracker_XY.cpp”. 

--------- 



 

 

3.5.2 Dual-Bot RC Using ZigBee Broadcast  
If the reader is not familiar with the ROBOTIS ZigBee technology, he/she is referred to Section 3.3.6 

which should be read first, before going on to this Section 3.5.2 and the next Section 3.5.3. 

In this project, the ROBOTIS ZigBee Hardware described in Section 3.3.6 is applied between the 
Desktop PC and the two Robots PTC and MonoBot.  This C/C++ project uses a single COM port to 
communicate with both CM-550 robots using ZigBee Broadcast mode. 

This project’s goal is to compare its run-time performance to its “mirror” project written in Standard 
Python (Section 3.4.2).  The resulting C/C++ solution is named “PTC_MB_ZGB_Central.cpp” for the PC 
side and it is designed to work with the previously developed CM-550 codes: 
“MB_BRC_ZGB_ID.py/tsk3” for the MonoBot, and “PTC_BRC_ZGB_SD_RPi_VS_ID.py/tsk3” for the 
PTC Robot. 

The overall code structure developed for “PTC_RC_Color_Tracker_DC.cpp” in Section 3.5.1 can be 
ported over to this project “PTC_MB_ZGB_Central.cpp”, but additional codes will be needed to handle 
Remocon packets that would be sent back from the robots to the PC. 

------- 

Fig. 3.184 shows the initial preparation to prepare and send a typical Maneuver-type Remocon packet 
to PTC, i.e. robot_1 == TRUE on Line 304: 

 TxData is first cleared to zero for robot_1 (Line 306). 
 Message bit m_1 is shifted left 4 bits and inserted into TxData (Line 307). 
 Function prepare_data() is next called (Line 308).  This function adds on the other message 

bits as needed into TxData.  The details for this function are provided in Figs. 185 and 186. 
 Upon return from Function prepare_data(), if TxD_OK is set to TRUE (Line 309), 

signifying that the final TxData message is ready to be sent to robot_1, Function 
send_data() is called to assemble the complete 6-byte Remocon Packet and to broadcast it 
out to all robots.  The details for Function send_data() are provided in the previous Fig. 
3.171. 

 A similar procedure is coded for MonoBot (robot_2) but using message bit m_2. 

 

Fig. 3.184 Inserting Robot 1 ID into Remocon Message in “PTC_MB_ZGB_Central.cpp”. 

----------- 

 If Line 419 turns out to be FALSE, i.e. Tilt or Velocity mode is already selected, then the 
ELSE branch at Line 438 is taken, and pan_mode is simply reset to FALSE by Line 439. 



 

 

 

Fig. 3.189 Image and Text procedures for PTC’s Pan mode in “PTC_MB_ZGB_Central_Relay.cpp”. 

------- 

3.5.4 Dual-Bot RC Using Dual BT-210s with BOOST.ASIO 
In this last C/C++ project, the BOOST.ASIO library is used.  The author used Version 1.74.0 

(https://www.boost.org/doc/libs/1_74_0/doc/html/boost_asio.html), and specifically its “Serial Ports” 
devices (https://www.boost.org/doc/libs/1_74_0/doc/html/boost_asio/overview/serial_ports.html).   

For readers new to the BOOST libraries, the author recommends Mukherjee (2015) for a good 
reference to help getting started with various aspects of software installation and usage on Windows and 
Linux machines (also see Appendix A for the author’s tips).   

The basic procedure for using a BOOST Serial Port in C/C++ is as follows: 

1. Request an I/O service from the OS with a statement such as io_service io_1; 

for more information visit this web link 
(https://www.boost.org/doc/libs/1_74_0/doc/html/boost_asio/overview/core/basics.html). 

2. Instantiate a new “serial_port” device connected to a COM port specified by the user and 
associate it to the previous I/O service line named io_1, for example: 

a. const char* PORT1 = "COM24"; 
b. serial_port ser1(io_1, PORT1); 
c. from then on, use BOOST.ASIO functions to set up the communications options 

such as Baud Rate, and then use Write and Read functions as needed:  

serial_port_base::baud_rate BAUD(57600); 

ser1.set_option(BAUD); 

write(ser1, buffer(TxD_packet, 6));   // “buffer” is an ASIO function 

read(ser1, buffer(RxD_packet_1, 6); 

for more information please visit 
https://www.boost.org/doc/libs/1_74_0/doc/html/boost_asio/overview/serial_ports.html 

------ 

 



 

 

3.6 Wrapping up Volume 1 

The author considers Volume 1 to be a “foundational” volume and hopes that the robotics concepts 
and programming techniques showcased will be found “useful” by the readers.  The organization of this 
Volume is unusual for reasons already mentioned in Chapter 1 (Section 1.3) and the author also hopes 
that the readers did not find it confusing or too much repetitive. 

The ROBOTIS ENGINEER Robotic System with larger memory and more communications ports on 
the CM-550, along with more control features for its Dynamixel Actuators and RPi based camera, 
provides a big leap in performance and functionality in the Educational Robotics area.  In Volume 1, the 
author has explored only some of its main functionalities and would like to “share” his “lessons learned”: 

1. The addition of the MicroPython functionality to the CM-550 earns a Big “LIKE” from the 
author as it allows standard structures like arrays and other data types than “integer”, and also 
other standard language usage for function calls and object programming.  It also allows for 
more compact coding. 

2. The MicroPython Interpreting Engine has a surprisingly good runtime performance as 
compared to TASK codes which are essentially compiled C codes.  But the ROBOTIS 
MicroPython Editor was clunky to use considering the author’s editing habits, so he preferred 
to use the Thonny’s IDE for editing and the ROBOTIS MicroPython Editor just for 
“compiling” and “download”. 

3. The CM-550 expanded COM Ports programming features, along with the use of the 
“undervalued” Remocon Packet protocol, allow “greater mileage” to the ENGINEER system 
(as well as the older ROBOTIS systems – meaning that users can mix them all up), as they 
allow versatility in adding co-controlling computing/sensing platforms such as Desktops and 
Laptops (Volume 1), as well as Single-Board-Computers based on Windows or Linux OSes 
(planned for Volume 2).  The author had sent his recommendation to ROBOTIS folks to 
expand their Remocon Packet protocol to be able to handle 32 bits for the actual data, i.e. a 
10-byte packet instead of the current 6-byte packet (in existence since 2005!) – we’ll see if 
ROBOTIS would take on such recommendation. 

4. Not too surprisingly, C/C++ provided the best runtime performance but Python provided 
quicker development times. 

 


